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Evidence of compressive growth of basilar membrane displacement can be observed in 
measurements of DPOAE. When the levels of the two stimulus tones are related by the 
formula L1=0.4 L2+39, then the DPOAE I/O function resembles the classic Fletcher-Munson 
(1933) loudness function. In order to understand how the DPOAE I/O function relates to the 
perception of loudness, we need to also understand how each of these response measures 
relates to basilar membrane displacement. The model of cochlear mechanics described here 
provides a means to directly compare the rate of growth of these three response measures. 

1 Introduction 

The rate of growth of distortion-product otoacoustic emission (DPOAE) level when 
stimulus levels are optimized [2,3] is remarkably similar to log-loudness [1]. One 
salient feature in each case is the compressive growth observed at moderate 
stimulus levels. The compressive growth of basilar membrane (BM) displacement is 
thought to be the underlying reason for the compressive growth observed in the 
other two response measures [4]. In this paper, we use a nonlinear, active, two-
dimensional model of cochlear mechanics to directly compare the rate of growth of 
DPOAE level, BM displacement, and (simulated) log-loudness in the same ear. 

2 Model 

It has become increasingly clear in recent years that the mechanics of the BM, 
although highly nonlinear, can often be represented by a linear model of the 
following form [5,6,7]. 

  (1) apa ZZZ γ+=

In this equation,  is the passive impedance, observed at high stimulus levels or 
post mortem,  is the active impedance that plays a major role at low stimulus 
levels, γ  is a parameter that decreases from one at the lowest stimulus level to zero 
at the highest stimulus level, and  is the combined impedance of the basilar 
membrane (BM). We can implement a time-domain version of the impedance in Eq. 
(1) by using the following set of differential equations. 
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  (2) fpccccccbbbbbb PAKgRgKRM −=++++ ξξξξ &&&& ξ

ξ  (3) mrccccccrrrrrr VgKgRgKRM −=−−++ ξξξξ &&&&

  (4) bfmmmm gVGVC ξγ=+&

Equations (2) - (4) represent the micromechanics of the model at each position 
along the cochlear partition. Equation (2) describes motion of the BM. Equation (3) 
describes motion of a second mechanical degree-of-freedom (DOF) that is coupled 
to the BM. The variable ξ  is the difference between the two DOFs. Equation (4) 
describes outer hair cell (OHC) motility, which is driven by BM displacement and 
exerts a force on the second DOF. When all of the coefficients of these differential 
equations are constants, the ratio of fluid pressure  to BM velocity ξ  is 
proportional to BM impedance  and can be expressed in the form of Eq. (1). An 
electrical-analog equivalent of the micromechanics is shown in Figure (1). 
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In previous work [9], we have used ξ  as the input the OHC motility and 
associated this variable with the shear-displacement between the reticular lamina 
(RL) and tectorial membrane (TM). We have discovered that this previous 
formulation of the differential equations produced BM impedance that was 
incompatible with Eq. (1). We have adopted ξ  as the input to OHC motility in the 
present work in order to preserve certain intensity-invariant properties that are 
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e 1. Electrical-analog circuit representing cochlear micromechanics that includes two mechanical 
ances and an OHC feedback force. The electrical current through the OHC is proportional to BM 
cement at low levels, but saturates at high levels. The OHC feedback force is proportional to 

ge across its membrane. 
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associated with Eq. (1) [7]. The physical interpretation of this representation is that 
the shear displacement, which provides the input to both inner and outer hair cells, 
is proportional to BM displacement. 

When the coefficient γ  is a function of BM displacement, the micromechanics 
become nonlinear. In the present work, we chose the following equation for γ  to 
simulate the saturation of OHC mechano-electric transduction. 
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Because this is the only nonlinear element in the model, it is directly responsible for 
both the generation of DPOAEs and the loss of gain (i.e. compression) at high 
stimulus levels. 

One other difference between the present model and previous work is a two-
dimensional (2-D) representation of the cochlear fluid. Much of our previous work 
utilized a one-dimensional (1-D) fluid for computational convenience. We 
discovered that we were able to achieve larger “cochlear amplifier” gains with the 
2-D fluid than were possible with the 1-D fluid. In this paper we use 351 points in 
the longitudinal dimension and 8 points in the other dimension to represent the 2-D 
cochlear fluid. 

3 Model Results  

Model parameters were chosen to represent salient features of the human cochlea. 
Consideration was given to the shape and overall sensitivity of BM displacements 
as well as middle-ear (forward and reverse) transmission. Our best attempt, 
presented here, still falls short of our goal of achieving a good representation of all 
aspects of cochlear mechanics.  

3.1 Basilar membrane displacement 

Model results for 1-nm displacement of the BM at four places along the cochlear 
partition are shown in the Fig. 2A. These tuning curves were derived from impulse 
responses from a linear, active version of the model, produced by setting γ . The 
Q values for these tuning curves are typical of neural tuning curves in cat and the 
group delays (not shown) for the best frequency at each place are approximately 
equal to estimates derived from SFOAE measurements in human ears [8]. Fig. 2B 
shows the growth of BM displacement at the 4-kHz place as a function of the sound 
pressure  level of a 4-kHz tone. 
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. Model results for (A) BM iso-displacement and (B) BM input/output (I/O) function. The 
ne in panel A indicates normal hearing threshold. The dashed line in the panel B is the BM I/O 
when γ . 00 =
istortion-product otoacoustic emission 

3, DPOAE levels observed in the model are compared with measurements in 
subjects [9]. Stimulus conditions were the same in both cases: F1 = 4 kHz, F2 
Hz, and L1 = 0.4⋅L2 + 39. Fig. 3A shows DPOAE levels for three groups of 

subjects with differing amounts of hearing loss, (1) 20 dB or less, (2) 25 to 
and (3) 40 to 50 dB. Note that the DPOAE threshold and rate of growth both 
 with hearing loss. In the model, setting the parameter γ  to a value less 
e simulates hearing loss. Fig. 3B shows the DPOAE level for two model 
ns: (1) γ  and (2) γ . Although, the DPOAE level in the model 
ly the same as in the human ears, the growth rate differs. We will return to 
e later. 

0
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 Input-output curves for the 2F1-F2 DPOAE as a function of L2 (the level of the higher frequency 
one). Panel A shows data from three groups of human subjects with varying amounts of hearing 
el B shows model results with and without a simulated mild hearing loss. 
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3.3 Whole-nerve response 

To simulate a whole-nerve (WN) response in the model we apply a soft rectifier to 
the BM displacement at each position [to represent inner hair cell (IHC) 
transduction] and sum across the entire length of the BM. In Fig. 4, we compare the 
model WN response (for a 4-kHz tone) with an empirical estimate of perceptual 
loudness (for a 1-kHz tone) [1]. An arbitrary scale factor was applied to the WN 
values to make them similar to the loudness values. The curves in Fig. 4 show the 
logarithm (base 10) of the WN and loudness values. The good agreement in the 
slope of the log-WN and log-loudness at low levels (thick and thin solid lines) is a 
consequence of expansive growth in the IHC soft rectifier. At moderate levels the 
IHC stage is linear and the BM growth is compressive. Model results for WN are 
shown for three model conditions: (1) γ  to simulate normal hearing, (2) 

 to simulate a mild hearing loss (with a threshold shift of about 22 dB), 
and (3) γ  to simulate a moderate hearing loss (with a threshold shift of about 
36 dB).  

10 =
5.00 =γ

00 =

 

Figure 4. Loudness and WN response as a function of stimulus level. The thin line shows loudness 
growth based on the measurements of Fletcher and Munson [1]. The thick lines show the model WN 
response for the normal case and two hearing-impaired cases with threshold shifts of 22 and 36 dB. 

3.4 Compression 

To compare the rates of growth of BM, DPOAE, and WN, we have computed the 
compression of each of the respective I/O curves. We define compression as the 
reciprocal of the slope of the I/O curve. For the BM and DPOAE I/O curves, 
compression is the dB increase in stimulus level divided by the dB increase in 
response level. For the WN curve, we divided the dB increase in stimulus level by 
the increase in 10⋅log10 of the WN value. Figure 5 compares the compression of the 
model BM, DPOAE and WN responses. Note that the BM growth is linear at low 
levels when γ  and linear at all levels when γ . This can been seen in the 
slopes of the I/O curves in Fig. 2B and is indicated by a compression value of one 

10 = 00 =

moh2002.doc submitted to Tony Gummer on 25-Jul-02  5/5 



 

in Fig. 5
to the e
hearing 
SPL. Th
for diff
properti
DPOAE
are und
boundar

Figure 5. 
WN grow

shows the
BM respo

4 Dis

The coc
DPOAE
the sing
the BM
stimuli 
observa
amount 
loudnes
consequ
loss. 

moh20
A. The compression of the WN response is less than one at 0 dB SPL due 

 

Compression observed in model response measures. Panel A shows the compression of BM and 
th in response to a single tone (at 4 kHz) for two model conditions: and . Panel B 

 compression of BM and WN growth in response to two tones (at 4 and 3.32 kHz) for . 
nses are from the 4 kHz place. 

10 =γ 00 =γ

10 =γ
xpansive non-linearity of the IHC soft-rectifier. In the case of moderate 
loss (γ ), the region of expansive growth is extended to about 50 dB 
e rate of growth of the WN response is approximately the same at threshold 
ering amounts of hearing loss because it is mostly determined by the 
es of IHC transduction. Fig. 5B shows the compression of the BM and 
 responses when the stimulus consists of two tones. The monotonic results 
esirable and may be partly due to mismatched impedance at the stapes 
y of the cochlear model that causes excessive basal reflection. 

00 =

cussion  

hlear model described here is sufficiently comprehensive to simulate BM, 
, and WN responses simultaneously. In the current version of the model, 
le tone responses appear to exhibit realistic response growth as observed in 
 and WN responses. However, the BM and DPOAE responses to two-tone 
do not yet appear to be realistic and require further investigation. The 
tion in the model that the rate of WN growth is nearly independent of 
of hearing loss is consistent with recent measures of the rate of growth of 
s in normal and hearing-impaired subjects [10]. This result is a direct 
ence of linear BM growth at threshold, regardless of the amount of hearing 
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